Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Lancet ; 401(10375): 432-433, 2023 02 11.
Article in English | MEDLINE | ID: covidwho-2227831

Subject(s)
COVID-19 , Humans , Mortality
2.
Euro Surveill ; 28(3)2023 01.
Article in English | MEDLINE | ID: covidwho-2215128

ABSTRACT

BackgroundIt sparked considerable attention from international media when Denmark lifted restrictions against COVID-19 in February 2022 amidst widespread transmission of the new SARS-CoV-2 Omicron variant and a steep rise in reported COVID-19 mortality based on the 30-day COVID-19 death count.AimOur aim was to investigate how coincidental infections affected COVID-19 mortality estimates following the introduction of the Omicron variant in late 2021.MethodsWe compared the 30-day COVID-19 death count with the observed mortality using three alternative mortality estimation methods; (i) a mathematical model to correct the 30-day COVID-19 death count for coincidental deaths, (ii) the Causes of Death Registry (CDR) and (iii) all-cause excess mortality.ResultsThere was a substantial peak in the 30-day COVID-19 death count following the emergence of the Omicron variant in late 2021. However, there was also a substantial change in the proportion of coincidental deaths, increasing from 10-20% to around 40% of the recorded COVID-19 deaths. The high number of 30-day COVID-19 deaths was not reflected in the number of COVID-19 deaths in the CDR and the all-cause excess mortality surveillance.ConclusionOur analysis showed a distinct change in the mortality pattern following the introduction of Omicron in late 2021 with a markedly higher proportion of people estimated to have died with, rather than of, COVID-19 compared with mortality patterns observed earlier in the COVID-19 pandemic. Our findings highlight the importance of incorporating alternative mortality surveillance methods to more correctly estimate the burden of COVID-19 as the pandemic continues to evolve.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , Denmark/epidemiology
3.
Lancet Child Adolesc Health ; 7(3): 171-179, 2023 03.
Article in English | MEDLINE | ID: covidwho-2184850

ABSTRACT

BACKGROUND: The incidence of respiratory syncytial virus (RSV) increased in several countries after the relaxation of COVID-19 restrictions. We aimed to investigate the age-related risk of RSV-associated hospital admissions and need for mechanical ventilation during the RSV resurgence in summer and autumn 2021 compared with the four RSV seasons preceding the COVID-19 pandemic. We also aimed to describe the clinical complications necessitating mechanical ventilation. METHODS: This population-based cohort study included patients aged 0-17 years admitted to hospital with RSV in Denmark during the RSV resurgence in summer and autumn 2021, and the four pre-COVID-19 RSV seasons (2016-17, 2017-18, 2018-19, and 2019-20). We retrieved data on RSV-associated hospital admissions from the Danish National Patient Registry and demographic and clinical details of children who received mechanical ventilation through prospective real-time data collection in 2021-22 and retrospective data collection for the 2016-17 to 2019-20 RSV seasons from all eight paediatric and neonatal intensive care units in Denmark. Risk factors for severe RSV disease were as defined as age younger than 3 months or severe comorbidities. We calculated the risk of RSV-associated hospital admissions per 100 000 population in each RSV season from week 21 to week 20 of the following year. We also calculated the risk rate of receiving mechanical ventilation per 100 000 population and 1000 RSV-associated hospital admissions during each RSV season from week 21 to week 20 of the following year. We calculated risk ratios (RRs) for hospital admission and mechanical ventilation by dividing the risk rate of hospital admission and mechanical ventilation in 2021-22 by annual mean risk rates in the four pre-COVID-19 RSV epidemics (2016-17 to 2019-20). We compared RRs using Fisher's exact test. We compared complications leading to intubation between children with and without risk factors for severe RSV disease. The study is registered at ClinicalTrials.gov, NCT05186597. FINDINGS: Among 310 423 Danish children aged younger than 5 years, the mean number of RSV-associated hospital admissions increased from 1477 (SD 226) in the 2016-17 to 2019-20 RSV seasons to 3000 in the 2021-22 RSV season (RR 2·0 [95% CI 1·9-2·1]). 54 children with RSV received mechanical ventilation in 2021-22 compared with 15-28 annually in the 2016-17 to 2019-20 RSV seasons (2·3 [1·6-3·3]). The highest increase in hospital admissions and need for mechanical ventilation occurred among children aged 24-59 months (4·1 [3·6-4·7] for hospital admission; 4·6 [1·7-12·6] for mechanical ventilation). Among children admitted to hospital, the risk of mechanical ventilation was similar in 2021-22 and the four pre-COVID-19 seasons (risk rate 14·3 per 1000 RSV-associated hospital admissions [95% CI 10·4-19·3] vs 12·9 [10·1-16·1]; RR 1·1 [95% CI 0·8-1·6]). Across all RSV seasons studied, among children younger than 3 months or those with severe comorbidities, respiratory failure due to bronchiolitis led to mechanical ventilation in 69 (79%) of 87 children. Of 46 children with no risk factors for severe RSV, 40 (87%) received mechanical ventilation due to additional complications, including neurological (n=16; 35%), cardiac (n=1; 2%), and pulmonary complications (n=23; 50%; eg, wheeze responsive to bronchodilator therapy, severe bacterial co-infections, and pneumothorax). INTERPRETATION: In Denmark, RSV disease did not seem to be more severe for the individual child during the RSV resurgence in 2021 following relaxation of COVID-19 restrictions. However, hospital admissions were higher among older children, possibly due to a postponed first RSV infection or no recent reinfection. Older children without risk factors for severe RSV disease had atypical complications that led to intubation. If new RSV-preventive interventions for healthy infants delay first RSV infection, a higher number of older children might be admitted to hospital due to atypical clinical phenotypes, rather than classical bronchiolitis. FUNDING: National Ministry of Higher Education and Science and the Innovation Fund Denmark.


Subject(s)
Bronchiolitis , COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Cohort Studies , Retrospective Studies , Prospective Studies , Respiration, Artificial , Pandemics , COVID-19/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Bronchiolitis/epidemiology , Hospitals , Denmark
4.
PLoS Med ; 19(11): e1004037, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2140363

ABSTRACT

BACKGROUND: Individuals with a prior Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection have a moderate to high degree of protection against reinfection, though seemingly less so when the Omicron variant of SARS-CoV-2 started to circulate. The aim of this study was to evaluate the vaccine effectiveness (VE) against SARS-CoV-2 reinfection, Coronavirus Disease 2019 (COVID-19)-related hospitalization, and COVID-19-related death, in individuals with prior SARS-CoV-2 infection, and to assess the effect of time since vaccination during periods with different dominant SARS-CoV-2 variants. METHODS AND FINDINGS: This study used a nationwide cohort design including all individuals with a confirmed SARS-CoV-2 infection, who were alive, and residing in Denmark between 1 January 2020 and 31 January 2022. Using Danish nationwide registries, we obtained information on SARS-CoV-2 infections, COVID-19 vaccination, age, sex, comorbidity, staying at hospital, and country of origin. The study population included were individuals with prior SARS-CoV-2 infection. Estimates of VE against SARS-CoV-2 reinfection with 95% confidence intervals (CIs) were calculated using a Poisson regression model and adjusted for age, sex, country of origin, comorbidity, staying at hospital, calendar time, and test incidence using a Cox regression model. The VE estimates were calculated separately for three periods with different dominant SARS-CoV-2 variants (Alpha (B.1.1.7), Delta (B.1.617.2), or Omicron (B.1.1.529)) and by time since vaccination using unvaccinated as the reference. In total, 148,527 person-years and 44,192 SARS-CoV-2 infections were included for the analysis regarding reinfections. The study population comprised of 209,814 individuals infected before or during the Alpha period, 292,978 before or during the Delta period, and 245,530 before or during the Omicron period. Of these, 40,281 individuals had completed their primary vaccination series during the Alpha period (19.2%), 190,026 during the Delta period (64.9%), and 158,563 during the Omicron period (64.6%). VE against reinfection following any COVID-19 vaccine type administered in Denmark, peaked at 71% (95% CI: -Inf to 100%) at 104 days or more after vaccination during the Alpha period, 94% (95% CI: 92% to 96%) 14 to 43 days after vaccination during the Delta period, and 60% (95% CI: 58% to 62%) 14 to 43 days after vaccination during the Omicron period. Waning immunity following vaccination was observed and was most pronounced during the Omicron period. Due to too few events, it was not possible to estimate VE for hospitalization and death. Study limitations include potentially undetected reinfections, differences in health-seeking behavior, or risk behavior between the compared groups. CONCLUSIONS: This study shows that in previously infected individuals, completing a primary vaccination series was associated with a significant protection against SARS-CoV-2 reinfection compared with no vaccination. Even though vaccination seems to protect to a lesser degree against reinfection with the Omicron variant, these findings are of public health relevance as they show that previously infected individuals still benefit from COVID-19 vaccination in all three variant periods.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , Reinfection/epidemiology , Reinfection/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Vaccine Efficacy , Denmark/epidemiology
5.
Sci Rep ; 12(1): 18559, 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2106456

ABSTRACT

Both the USA and Europe experienced substantial excess mortality in 2020 and 2021 related to the COVID-19 pandemic. Methods used to estimate excess mortality vary, making comparisons difficult. This retrospective observational study included data on deaths from all causes occurring in the USA and 25 European countries or subnational areas participating in the network for European monitoring of excess mortality for public health action (EuroMOMO). We applied the EuroMOMO algorithm to estimate excess all-cause mortality in the USA and Europe during the first two years of the COVID-19 pandemic, 2020-2021, and compared excess mortality by age group and time periods reflecting three primary waves. During 2020-2021, the USA experienced 154.5 (95% Uncertainty Interval [UI]: 154.2-154.9) cumulative age-standardized excess all-cause deaths per 100,000 person years, compared with 110.4 (95% UI: 109.9-111.0) for the European countries. Excess all-cause mortality in the USA was higher than in Europe for nearly all age groups, with an additional 44.1 excess deaths per 100,000 person years overall from 2020-2021. If the USA had experienced an excess mortality rate similar to Europe, there would have been approximately 391 thousand (36%) fewer excess deaths in the USA.


Subject(s)
COVID-19 , Humans , United States/epidemiology , COVID-19/epidemiology , Pandemics , Europe/epidemiology , Public Health , Algorithms , Mortality
6.
Influenza Other Respir Viruses ; 16(4): 707-716, 2022 07.
Article in English | MEDLINE | ID: covidwho-1891574

ABSTRACT

BACKGROUND: Seasonal influenza-associated excess mortality estimates can be timely and provide useful information on the severity of an epidemic. This methodology can be leveraged during an emergency response or pandemic. METHOD: For Denmark, Spain, and the United States, we estimated age-stratified excess mortality for (i) all-cause, (ii) respiratory and circulatory, (iii) circulatory, (iv) respiratory, and (v) pneumonia, and influenza causes of death for the 2015/2016 and 2016/2017 influenza seasons. We quantified differences between the countries and seasonal excess mortality estimates and the death categories. We used a time-series linear regression model accounting for time and seasonal trends using mortality data from 2010 through 2017. RESULTS: The respective periods of weekly excess mortality for all-cause and cause-specific deaths were similar in their chronological patterns. Seasonal all-cause excess mortality rates for the 2015/2016 and 2016/2017 influenza seasons were 4.7 (3.3-6.1) and 14.3 (13.0-15.6) per 100,000 population, for the United States; 20.3 (15.8-25.0) and 24.0 (19.3-28.7) per 100,000 population for Denmark; and 22.9 (18.9-26.9) and 52.9 (49.1-56.8) per 100,000 population for Spain. Seasonal respiratory and circulatory excess mortality estimates were two to three times lower than the all-cause estimates. DISCUSSION: We observed fewer influenza-associated deaths when we examined cause-specific death categories compared with all-cause deaths and observed the same trends in peaks in deaths with all death causes. Because all-cause deaths are more available, these models can be used to monitor virus activity in near real time. This approach may contribute to the development of timely mortality monitoring systems during public health emergencies.


Subject(s)
Influenza, Human , Denmark/epidemiology , Humans , Mortality , Pandemics , Seasons , Spain/epidemiology , United States/epidemiology
7.
PLoS Biol ; 20(4): e3001623, 2022 04.
Article in English | MEDLINE | ID: covidwho-1846911

ABSTRACT

Molecular biology holds a vast potential for tackling climate change and biodiversity loss. Yet, it is largely absent from the current strategies. We call for a community-wide action to bring molecular biology to the forefront of climate change solutions.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Molecular Biology
8.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: covidwho-1793105

ABSTRACT

We estimated interim influenza A vaccine effectiveness (VE) following a late sharp rise in cases during an influenza A(H3N2)-dominated 2021/22 season, after lifting COVID-19 restrictions. In children aged 2-6 years offered a live attenuated influenza vaccine, adjusted VE was 62.7% (95% CI: 10.9-84.4) in hospitalised and 64.2% (95% CI: 50.5-74.1) in non-hospitalised children. In non-hospitalised patients aged 7-44 years, VE was 24.8% (95% CI: 12.8-35.2); VE was non-significant in remaining age groups and hospital/non-hospital settings.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Case-Control Studies , Child , Denmark/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Vaccination , Vaccine Efficacy
9.
PLoS Med ; 18(12): e1003874, 2021 12.
Article in English | MEDLINE | ID: covidwho-1581902

ABSTRACT

BACKGROUND: The recommendations in several countries to stop using the ChAdOx1 vaccine has led to vaccine programs combining different Coronavirus Disease 2019 (COVID-19) vaccine types, which necessitates knowledge on vaccine effectiveness (VE) of heterologous vaccine schedules. The aim of this Danish nationwide population-based cohort study was therefore to estimate the VE against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and COVID-19-related hospitalization and death following the first dose of the ChAdOx1 vaccine and the combination of the ChAdOx1/mRNA vaccines. METHODS AND FINDINGS: All individuals alive in or immigrating to Denmark from 9 February 2021 to 23 June 2021 were identified in the Danish Civil Registration System. Information on exposure, outcomes, and covariates was obtained from Danish national registries. Poisson and Cox regression models were used to calculate crude and adjusted VE, respectively, along with 95% confidence intervals (CIs) against SARS-CoV-2 infection and COVID-19-related hospitalization or death comparing vaccinated versus unvaccinated individuals. The VE estimates were adjusted for calendar time as underlying time and for sex, age, comorbidity, country of origin, and hospital admission. The analyses included 5,542,079 individuals (97.6% of the total Danish population). A total of 144,360 individuals were vaccinated with the ChAdOx1 vaccine as the first dose, and of these, 136,551 individuals received an mRNA vaccine as the second dose. A total of 1,691,464 person-years and 83,034 SARS-CoV-2 infections were included. The individuals vaccinated with the first dose of the ChAdOx1 vaccine dose had a median age of 45 years. The study population was characterized by an equal distribution of males and females; 6.7% and 9.2% originated from high-income and other countries, respectively. The VE against SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine was 88% (95% CI: 83; 92) 14 days after the second dose and onwards. There were no COVID-19-related hospitalizations or deaths among the individuals vaccinated with the combined vaccine schedule during the study period. Study limitations including unmeasured confounders such as risk behavior and increasing overall vaccine coverage in the general population creating herd immunity are important to take into consideration when interpreting the results. CONCLUSIONS: In this study, we observed a large reduction in the risk of SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine, compared with unvaccinated individuals.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , SARS-CoV-2 , Adult , Comorbidity , Denmark , Female , Hospitalization , Humans , Male , Middle Aged , Risk , Treatment Outcome , Vaccination , Vaccine Efficacy
10.
Comput Stat Data Anal ; 169: 107405, 2022 May.
Article in English | MEDLINE | ID: covidwho-1568617

ABSTRACT

It is shown how to overcome a new missing data problem in survival analysis. Iterative nonparametric techniques are utilized and the missing data information is both estimated and used for further estimation in each iterative step. Theory is developed and a good finite sample performance is illustrated by simulations. The main motivation is an application to French data on the temporal development of the number of hospitalized Covid-19 patients.

11.
Mol Syst Biol ; 17(10): e10459, 2021 10.
Article in English | MEDLINE | ID: covidwho-1498031

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMAs) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria, and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomic data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Humans , Inflammation , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Weight Loss
12.
Sci Rep ; 11(1): 20815, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1479814

ABSTRACT

Europe experienced excess mortality from February through June, 2020 due to the COVID-19 pandemic, with more COVID-19-associated deaths in males compared to females. However, a difference in excess mortality among females compared to among males may be a more general phenomenon, and should be investigated in none-COVID-19 situations as well. Based on death counts from Eurostat, separate excess mortalities were estimated for each of the sexes using the EuroMOMO model. Sex-differential excess mortality were expressed as differences in excess mortality incidence rates between the sexes. A general relation between sex-differential and overall excess mortality both during the COVID-19 pandemic and in preceding seasons were investigated. Data from 27 European countries were included, covering the seasons 2016/17 to 2019/20. In periods with increased excess mortality, excess was consistently highest among males. From February through May 2020 male excess mortality was 52.7 (95% PI: 56.29; 49.05) deaths per 100,000 person years higher than for females. Increased male excess mortality compared to female was also observed in the seasons 2016/17 to 2018/19. We found a linear relation between sex-differences in excess mortality and overall excess mortality, i.e., 40 additional deaths among males per 100 excess deaths per 100,000 population. This corresponds to an overall female/male mortality incidence ratio of 0.7. In situations with overall excess mortality, excess mortality increases more for males than females. We suggest that the sex-differences observed during the COVID-19 pandemic reflects a general sex-disparity in excess mortality.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Sex Factors , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Child , Child, Preschool , Europe/epidemiology , Female , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , Models, Statistical , Mortality , Pandemics , Poisson Distribution , Risk Factors , SARS-CoV-2 , Young Adult
13.
Adv Sci (Weinh) ; 8(17): e2101222, 2021 09.
Article in English | MEDLINE | ID: covidwho-1283720

ABSTRACT

COVID-19 is associated with mitochondrial dysfunction and metabolic abnormalities, including the deficiencies in nicotinamide adenine dinucleotide (NAD+ ) and glutathione metabolism. Here it is investigated if administration of a mixture of combined metabolic activators (CMAs) consisting of glutathione and NAD+ precursors can restore metabolic function and thus aid the recovery of COVID-19 patients. CMAs include l-serine, N-acetyl-l-cysteine, nicotinamide riboside, and l-carnitine tartrate, salt form of l-carnitine. Placebo-controlled, open-label phase 2 study and double-blinded phase 3 clinical trials are conducted to investigate the time of symptom-free recovery on ambulatory patients using CMAs. The results of both studies show that the time to complete recovery is significantly shorter in the CMA group (6.6 vs 9.3 d) in phase 2 and (5.7 vs 9.2 d) in phase 3 trials compared to placebo group. A comprehensive analysis of the plasma metabolome and proteome reveals major metabolic changes. Plasma levels of proteins and metabolites associated with inflammation and antioxidant metabolism are significantly improved in patients treated with CMAs as compared to placebo. The results show that treating patients infected with COVID-19 with CMAs lead to a more rapid symptom-free recovery, suggesting a role for such a therapeutic regime in the treatment of infections leading to respiratory problems.


Subject(s)
COVID-19/metabolism , Adult , Aged , Antioxidants/metabolism , COVID-19/blood , Double-Blind Method , Female , Humans , Inflammation/blood , Inflammation/metabolism , Male , Metabolome/physiology , Middle Aged , Proteins/metabolism , Proteome/metabolism , Young Adult
14.
Euro Surveill ; 26(8)2021 02.
Article in English | MEDLINE | ID: covidwho-1150674

ABSTRACT

BackgroundTimely monitoring of COVID-19 impact on mortality is critical for rapid risk assessment and public health action.AimBuilding upon well-established models to estimate influenza-related mortality, we propose a new statistical Attributable Mortality Model (AttMOMO), which estimates mortality attributable to one or more pathogens simultaneously (e.g. SARS-CoV-2 and seasonal influenza viruses), while adjusting for seasonality and excess temperatures.MethodsData from Nationwide Danish registers from 2014-week(W)W27 to 2020-W22 were used to exemplify utilities of the model, and to estimate COVID-19 and influenza attributable mortality from 2019-W40 to 2020-W20.ResultsSARS-CoV-2 was registered in Denmark from 2020-W09. Mortality attributable to COVID-19 in Denmark increased steeply, and peaked in 2020-W14. As preventive measures and national lockdown were implemented from 2020-W12, the attributable mortality started declining within a few weeks. Mortality attributable to COVID-19 from 2020-W09 to 2020-W20 was estimated to 16.2 (95% confidence interval (CI): 12.0 to 20.4) per 100,000 person-years. The 2019/20 influenza season was mild with few deaths attributable to influenza, 3.2 (95% CI: 1.1 to 5.4) per 100,000 person-years.ConclusionAttMOMO estimates mortality attributable to several pathogens simultaneously, providing a fuller picture of mortality by COVID-19 during the pandemic in the context of other seasonal diseases and mortality patterns. Using Danish data, we show that the model accurately estimates mortality attributable to COVID-19 and influenza, respectively. We propose using standardised indicators for pathogen circulation in the population, to make estimates comparable between countries and applicable for timely monitoring.


Subject(s)
COVID-19/mortality , Epidemiological Monitoring , Influenza, Human/mortality , Models, Statistical , Communicable Disease Control , Denmark/epidemiology , Humans , Seasons
16.
Euro Surveill ; 26(2)2021 01.
Article in English | MEDLINE | ID: covidwho-1067623

ABSTRACT

The European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.


Subject(s)
COVID-19/mortality , Mortality/trends , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cause of Death , Child , Child, Preschool , Computer Systems , Epidemiological Monitoring , Europe/epidemiology , Humans , Infant , Infant, Newborn , Middle Aged , SARS-CoV-2 , Young Adult
17.
Acta Vet Scand ; 62(1): 35, 2020 Jun 24.
Article in English | MEDLINE | ID: covidwho-799111

ABSTRACT

BACKGROUND: Respiratory diseases are major health concerns in the pig production sector worldwide, contributing adversely to morbidity and mortality. Over the past years there was a rise in reported incidents of respiratory disease in pigs in Norway, despite population wide freedom from Aujeszky´s disease, porcine reproductive and respiratory syndrome, porcine respiratory corona virus and enzootic pneumonia. The main objective of this study was to investigate acute outbreaks of respiratory disease in conventional Norwegian fattening pig herds. The study included 14 herds. In seven herds with reported outbreaks of acute respiratory disease, data on clinical signs was recorded and samples for laboratory examination were collected. Diagnostic protocols were compared by parallel analysis of clinically healthy pigs from seven non-outbreak herds. RESULTS: The most commonly reported clinical signs were sudden deaths and dyspnea. An average compartment morbidity of 60%, mortality of 4% and case fatality of 9% was recorded in the outbreak herds. Post-mortem examinations revealed acute lesions resembling porcine pleuropneumonia in all 28 pigs investigated from the outbreak herds and in 2 of the 24 (8%) pigs from the non-outbreak herds. Chronic lesions were recorded in another 2 pigs (8%) from the non-outbreak herds. Actinobacillus pleuropneumoniae serovar 8 was isolated from lungs and/or pleura from all tested pigs (n = 28) in the outbreak herds, and from 2 out of 24 pigs (8%) in the non-outbreak herds, one pig with an acute and another pig with a chronic infection. No other significant bacterial findings were made. Seroconversion to A. pleuropneumoniae antibodies was detectable in all outbreak herds analyzed and in six out of seven non-outbreak herds, but the risk ratio for seroconversion of individual pigs was higher (risk ratio 2.3 [1.50- 3.43 95% CI; P < 0.001]) in the outbreak herds. All herds tested positive for porcine circovirus type 2 and negative for influenza A viruses on oral fluid RT-qPCR. CONCLUSION: The main etiological pathogen found during acute outbreaks of respiratory disease was A. pleuropneumoniae serovar 8. All pigs from outbreak herds had typical lesions of acute porcine pleuropneumonia, and only A. pleuropneumoniae serovar 8 was identified. Co-infections were not found to impact disease development.


Subject(s)
Acute Disease/epidemiology , Disease Outbreaks/veterinary , Respiratory Tract Diseases/veterinary , Swine Diseases/epidemiology , Animals , Norway/epidemiology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/virology , Sus scrofa , Swine , Swine Diseases/microbiology , Swine Diseases/virology
18.
Euro Surveill ; 25(26)2020 07.
Article in English | MEDLINE | ID: covidwho-639161

ABSTRACT

A remarkable excess mortality has coincided with the COVID-19 pandemic in Europe. We present preliminary pooled estimates of all-cause mortality for 24 European countries/federal states participating in the European monitoring of excess mortality for public health action (EuroMOMO) network, for the period March-April 2020. Excess mortality particularly affected ≥ 65 year olds (91% of all excess deaths), but also 45-64 (8%) and 15-44 year olds (1%). No excess mortality was observed in 0-14 year olds.


Subject(s)
Cause of Death/trends , Coronavirus Infections/mortality , Coronavirus/isolation & purification , Influenza, Human/mortality , Pneumonia, Viral/mortality , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Coronavirus Infections/diagnosis , Disease Outbreaks , Europe/epidemiology , Female , Humans , Infant , Infant, Newborn , Influenza, Human/diagnosis , Male , Middle Aged , Mortality/trends , Pandemics , Pneumonia, Viral/diagnosis , Population Surveillance , Preliminary Data , SARS-CoV-2 , Young Adult
19.
iScience ; 23(7): 101303, 2020 Jul 24.
Article in English | MEDLINE | ID: covidwho-609713

ABSTRACT

The rapid and global spread of a new human coronavirus (SARS-CoV-2) has produced an immediate urgency to discover promising targets for the treatment of COVID-19. Drug repositioning is an attractive approach that can facilitate the drug discovery process by repurposing existing pharmaceuticals to treat illnesses other than their primary indications. Here, we review current information concerning the global health issue of COVID-19 including promising approved drugs and ongoing clinical trials for prospective treatment options. In addition, we describe computational approaches to be used in drug repurposing and highlight examples of in silico studies of drug development efforts against SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL